
We are searching data for your request:
Upon completion, a link will appear to access the found materials.
Vlnová teorie světla, kterou Maxwellovy rovnice zachytily tak dobře, se stala dominantní světelnou teorií v 1800s (překonala Newtonovu korpuskulární teorii, která selhala v řadě situací). První velkou výzvou pro teorii bylo vysvětlení tepelného záření, což je druh elektromagnetického záření emitovaného objekty kvůli jejich teplotě.
Testování tepelného záření
Zařízení může být nastaveno pro detekci záření z předmětu udržovaného při teplotě T1. (Protože teplé tělo vydává záření ve všech směrech, musí být zavedeno nějaké stínění, takže zkoumané záření je v úzkém paprsku.) Umístěním disperzního média (tj. Hranolu) mezi tělo a detektor, vlnové délky (λ) záření se rozptyluje v úhlu (θ). Detektor, protože to není geometrický bod, měří rozsah delta-theta což odpovídá rozsahu delta-λ, i když v ideálním uspořádání je tento rozsah relativně malý.
Li Já představuje celkovou intenzitu fragmentu na všech vlnových délkách, pak tato intenzita v intervalu δλ (mezi limity λ a 8& lamba;) je:
δJá = R(λ) δλ
R(λ) je lesknebo intenzita na jednotku intervalu vlnové délky. V notaci počtu se hodnoty δ sníží na jejich nulu a rovnice se stane:
dI = R(λ) dλ
Výše uvedený experiment detekuje dI, a proto R(λ) lze určit pro jakoukoli požadovanou vlnovou délku.
Radiance, teplota a vlnová délka
Provedením experimentu pro řadu různých teplot získáme řadu křivek radiance vs. vlnové délky, které poskytují významné výsledky:
- Celková intenzita vyzařovala na všech vlnových délkách (tj. Na ploše pod R(λ) křivka) se zvyšuje s rostoucí teplotou.
- To je jistě intuitivní a ve skutečnosti zjišťujeme, že pokud vezmeme integrál rovnice intenzity výše, dostaneme hodnotu, která je úměrná čtvrtému výkonu teploty. Konkrétně proporcionalita pochází Stefanův zákon a je určeno Stefan-Boltzmannova konstanta (sigma) ve formě:
Já = σ T4
- Hodnota vlnové délky λmax při které dosáhne radiance maxima klesá s rostoucí teplotou.
Experimenty ukazují, že maximální vlnová délka je nepřímo úměrná teplotě. Ve skutečnosti jsme zjistili, že pokud znásobíte λmax a teplotu, dostanete konstantu v čem je známá jako Weinův zákon o vysídlení:λmax T = 2,898 x 10-3 mK
Záření Blackbody
Výše uvedený popis zahrnoval trochu podvádění. Světlo se odráží od objektů, takže popsaný experiment naráží na problém toho, co je ve skutečnosti testováno. Aby se situace zjednodušila, vědci se podívali na černoch, což je předmět, který neodráží žádné světlo.
Zvažte kovovou krabici s malou dírou. Pokud světlo zasáhne díru, vstoupí do krabice a je malá šance, že se odrazí. Proto v tomto případě díra, ne samotná krabice, je černá. Zářením detekovaným vně díry bude vzorek záření uvnitř krabičky, takže k pochopení toho, co se uvnitř krabičky děje, je zapotřebí nějaká analýza.
- Krabice je naplněna elektromagnetickými stojatými vlnami. Jsou-li stěny kovové, záření se odrazí kolem uvnitř krabice s elektrickým polem, které se zastaví na každé zdi, čímž se vytvoří uzel na každé stěně.
- Počet stojatých vln s vlnovými délkami mezi λ a dλ je
N(λ) dλ = (8π V / λ4) dλ
- Každá jednotlivá vlna přispívá energií kT na záření v krabici. Z klasické termodynamiky víme, že záření v krabici je v tepelné rovnováze se stěnami při teplotě T. Záření je absorbováno a rychle znovu využito stěnami, což vytváří kmity ve frekvenci záření. Průměrná tepelná kinetická energie oscilačního atomu je 0,5kT. Protože se jedná o jednoduché harmonické oscilátory, střední kinetická energie se rovná střední potenciální energii, takže celková energie je kT.
- Záření souvisí s hustotou energie (energie na jednotku objemu) u(λ) ve vztahu
R(λ) = (C / 4) u(λ)
Porucha klasické fyziky
u(λ) = (8π / λ4) kTR(λ) = (8π / λ4) kT (C / 4) (známý jako Rayleigh-Jeansův vzorec)
Data (další tři křivky v grafu) ve skutečnosti ukazují maximální radianci a pod lambdamax v tomto bodě radiancy odpadne a blíží se 0 jako lambda se blíží 0.
Toto selhání se nazývá ultrafialová katastrofaa do roku 1900 vytvořilo vážné problémy pro klasickou fyziku, protože zpochybnilo základní pojmy termodynamiky a elektromagnetismu, které byly zapojeny do dosažení této rovnice. (Při delších vlnových délkách je vzorec Rayleigh-Jeans blíže pozorovaným datům.)
Planckova teorie
Max PlanckPlanck navrhl, že atom může absorbovat nebo reemitovat energii pouze v diskrétních svazcích (quanta). Pokud je energie těchto kvanta úměrná frekvenci záření, pak by se při velkých frekvencích energie podobně zvýšila. Protože žádná stojící vlna nemohla mít energii větší než kT, tím se dosáhlo účinného omezení vysokofrekvenční radiancy, čímž se vyřeší ultrafialová katastrofa.
Každý oscilátor mohl emitovat nebo absorbovat energii pouze v množství, které je celočíselným násobkem kvantity energie (epsilon):
E = n ε, kde je počet quanta, n = 1, 2, 3,…ν
ε = h νh
(C / 4)(8π / λ4)((hc / λ)(1 / (ehc/λ kT - 1)))kTERayleigh-Jeansův vzorec
Důsledky
kvantová fyzikafotoelektrický efekt, představením jeho teorie fotonů. Zatímco Planck představil myšlenku quanta k vyřešení problémů v jednom konkrétním experimentu, Einstein šel dále definovat jako základní vlastnost elektromagnetického pole. Planck a většina fyziků tuto interpretaci pomalu přijímali, dokud k tomu nebylo přesvědčivých důkazů.